

TOXICOLOGY SERVICES

- General toxicology:
- Rodents
- Non-rodents: dogs, NHPs and minipigs
- Infusion
- Inhalation Dermal
- Ocular
- Immunotoxicology
- Reproductive toxicology including minipigs and NHPs
- Carcinogenicity studies also in rasH2 and p53+/- mice
- Genetic toxicology: ICH compliant package
- In vitro toxicology: BCOP, MUSST, DPRA, Photo 3T3, Episkin™
- Agrochemical / Chemical / REACH
- QSAR
- Physical chemistry
- Ecotoxicology: wide range of test species

SAFETY PHARMACOLOGY

• Integrated Safety Pharmacology in Toxicology Studies - CV (JET), BP

Atlanbio

+33 (0)2 51 10 01 00

www.atlanbio.com

Media Services Ltd

+81 3 3666 9915

Fuji 16 Bldg 7F

Croen Research Inc. +82 31 888 9390

443-270, Korea

B.P 40309.

atlanbio@atlanbio.com

ALSO REPRESENTED BY

citoxlab@mediaservices-jp.com

Chuo-ku, Tokyo 103-0025, Japan

1-11-2 Nihonbashi Kayabacho,

customerservice@croen.co.kr

Advanced Institutes of Convergence

Technology - B-6th Fl., 864-1, lui-dong,

Yeongtong-gu, Suwon-si - Gyeonggi-do,

- Respiratory (JET), plethysmography
- CNS (FOB) and JET-EEG

CiToxLAB GROUP COMPANIES

CiToxLAB in France

+33 (0)2 32 29 26 26 contact.france@citoxlab.com B.P. 563 - 27005 Evreux Cedex, France

CiToxLAB in North-America

+1 888 353 2240 contact.northamerica@citoxlab.com 445, Armand-Frappier Blvd, Laval, Quebec, H7V 4B3, Canada

CiToxLAB in Denmark

+45 56 86 15 00 contact.scantox@citoxlab.com Hestehavevej 36A, Ejby, DK-4623 Lille Skensved, Denmark

CiToxLAB in Hungary

+ 36 88 545-300 contact.hungary@citoxlab.com Veszprém, Szabadságpuszta, 8200, Hungary

• Safety pharmacology core battery

- Early safety pharmacology screening
- hERG
- Rodent and non-rodent LVP telemetry
- Anesthetized models: ECG, ABP, LVP and QA

DMPK AND BIOMARKERS

• Radiolabelled DMPK: in all species

- Bioanalysis LC-MS/MS, GC-MS/MS, LC-ICP/MS, ELISA, RIA
- Toxicogenomics, miRNA: Affymetrix[™] Accredited service
- provider, Next Generation Sequencing (Illumina®)
- Immunology: 10-color flow cytometer, Luminex, Mesoscale

SPECIALIZED EXPERTISE

- Juvenile studies including minipigs
- Fertility studies in rodents and NHPs
- Radiation safety and efficacy studies
- Tissue Cross Reactivity: human and animal tissue banks
- Gene therapy vector biodistribution via qPCR
- ES cell testing: devTOX[™] and cardioTOX[™] (with Stemina) • Lead optimization and predictive toxicology services: Leadscreen™

PARTNER COMPANY

+1 608 204 0104 info@stemina.com www.stemina.com 504 South Rosa Road. Suite 150 Madison, Wisconsin 53719, USA

SPARCL[™]: Use of a novel technology in validation of a Non-Human Primate **C-Reactive Protein assay in serum**

Iohann Boulay, Maude Bigras, Karine Blouin, Karine Dumaresq-Doiron, Renée Riffon and Chris Chadwick

www.citoxlab.com

SPARCL[™]: Use of a novel technology in validation of a Non-Human Primate C-Reactive Protein assay in serum

Iohann Boulay¹, Maude Bigras¹, Karine Blouin¹, Karine Dumaresg-Doiron¹, Renée Riffon¹ and Chris Chadwick² 1. Immunology Department, CiToxLAB North America, Laval, Quebec, Canada - 2, Life Diagnostics, Inc.

INTRODUCTION

Biomarker assays have become more widely used over the years due to their role in drug discovery and development. C-Reactive Protein (CRP) is an acute-phase protein synthesized by the liver and released in response to tissue injury, infection or inflammation

(1). CRP is an annular (ring-shaped), pentameric protein which level increases following interleukin-6 secretion by macrophages and T cells. Its physiological role is to bind to lysophosphatidylcholine expressed on the surface of dead or dying cells (and some types of bacteria) in order to activate the complement system via the C1Q complex (2).

Up to now CRP has been quantified using ELISA (Enzyme-Linked Immunosorbent Assay), but alternative methodology is being explored to facilitate the integration of CRP analysis in toxicology studies.

SPARCL™ (Spatial Proximity Analyte Reagent Capture Luminescence) novel technology is a proximity-dependent, homogenous, chemiluminescent detection method that allows rapid and cost effective immunoassay development, validation and sample analysis. In a SPARCL assay, a chemiluminescent substrate (acridan) is brought into the proximity of an oxidative enzyme (horseradish peroxidase: HRP) through a specific antigen/antibody interaction. A flash of light proportional to the quantity of analyte present in the sample is generated upon addition of a trigger solution containing H2O2 and para-hydroxycinnamic acid (pHCA). There is no need to remove excess reactants, as acridan-conjugated antibodies distant from HRP produce no signal. Furthermore, to enhance the signal to noise ratio, a background reducing agent can be added to minimize the background signal from unbound reactants (3).

Add Trigge

Light

Figure 2. SPARCL key components. A. HRP labeled Antibody, B. Immunoassay target (analyte), C. 96 well low binding white plate. D. Acridan labeled Antibody. E. SPARCL Kit. F. Luminometer

Assay workflow

The Monkey CRP SPARCL kit produced by Life Diagnostics, Inc. was selected and slightly adapted for use.

- affinity-purified CRP-specific antibodies are mixed with standards, positive controls or serum samples in a 96-well white plate - background-reducing reagent is added

after sample incubation

- the plate is placed in a luminometer, then the trigger solution is injected into each well and luminescence is immediately measured.

Precision and Ruggedness

Precision samples consisted of Cynomolgus monkey serum containing endogenous CRP. For ULOQ (Upper Limit of Quantification) and high levels, serum from animals induced with LPS (lipopolysaccharide) was used. An intra-assay precision assessment was also performed in Rhesus monkey serum.

 Table 1. Intra- and Inter-Assay Precision Results and Ruggedness
 (inter-analyst precision) in Cynomolgus monkey sera

Sample	Intra-assay	precision	Inter-assay	precision	Ruggedness		
ю	Mean (range; ng/mL)	%CV (range)	Overall Mean (ng/mL)	Overall %CV	Mean analyst A (ng/mL)	Mean analyst B (ng/mL)	
	222.5.2/2.5		240.2		246.1	254.6	
ULOQ	222.5 - 367.5	1.3 - 21.8	249.5	15.1	%difference	-3.4	
	144.0 107.1		121.2		160.6	184.0	
High	144.8 - 18/.1	3.1 - 13.6	1/1./	13.3	%difference	-13.7	
					50.08	50.63	
Medium	46.22 - 54.47	1.1 - 5.7	50.34	7.1	%difference	-1.1	
					12.55	13.56	
Low	12.05 - 15.31	2.0 - 7.2	13.03	9.5	%difference	-7.7	
					4.053	4.694	
	2 5 20 5 1 2 7		1 257	176			

mple		y precision
ID	Mean (ng/mL)	%CV
LOQ	297.8	8.4
ligh	211.6	6.0
dium	53.08	4.4
.ow	14.98	2.0
LOQ	3.934	1.8

Table 2. Intr

in Rhesus m

a-A	Assay P Ikey ser	recision Results a
-assa	y precision	
in iL)	%CV	

Table 5. Pa	various Rh	e				
Sample ID	Dilution factor (range)	Adjusted Result (µg/mL)				
Female 1	50 - 1.600	7.845 - 8.278				
Female 2	50 - 800	3.353 - 3.928				
Female 3 (LPS induced)	4.800 - 19.200	795.2 - 833.5				
Female 4 (LPS induced)	4.800 - 19.200	772.5 - 808.9				
Male 1	50 - 800	3.580 - 3.944				
Male 2	50 - 800	3.861 - 4.231				
Male 3	50 - 800	3.956 - 4.130				

Stability

Samples containing high and low levels of endogenous CRP were used to assess the various stability conditions. Long-term stability is currently ongoing, but was demonstrated to be at least 70-days when stored at -70°C.

Hemolysis

+ 5

--- 9

- 10 + 11

-- 12

+ 13

Hemolysis was shown to have no impact on CRP measurement.

C-reactive protein induction in NHP

The assay could be successfully used to study CRP induction kinetic as it has been demonstrated that CRP significantly increases from 8h after dosing animals with LPS. The assay could also be used in the study of inflammation response to coronary (LAD) ligation, in which CRP increase was observed shortly after cardiac Troponin-I (cTnI) was released (as measured using another validated SPARCL cTnl assay).

and after LPS treatment

CONCLUSION

A novel method for the quantification of CRP in monkey serum samples, SPARCLTM, was successfully validated. The SPARCL assay presents an advantage of short assay run times since no washing is required. It allows high sample throughput, and the analytical range covers relevant concentrations in non-human primates.

Figure 3. A Representative SPARCL assa antibody and antigen interaction brings acrid into close proximity, the addition trigger so causes a flash of light

	1							
	1	1						
	/		1					
1			+	-	-			
1				-		 +**	 	
1			-					
<u> </u>			-					

Figure 4. Example of a SPARCL[™] flash luminescence signal for the highest CRP standard. Luminescence was measured every 0.02 seconds for 1 second.

	Required Dilution
	(depending on the
y. Specific	were used for re
an and HRP	evaluation of the %
	dilution

Table 4. Parallelism in various Cynomolgus monkeys

% differenc (range)	Adjusted Result (µg/mL)	Dilution factor (range)	Sample ID	Overall %CV	% difference (range)	Adjusted Result (µg/mL)	Dilution factor (range)	Sample ID
-17.3 to -3.4	7.455 - 8.867	50 - 1.600	Male 1	5.6	-10.5 to 4.2	22.30 - 25.84	100 - 3.200	Female 1
-7.6 to 7.4	5.605 - 6.516	50 - 800	Male 2	4.5	-0.3 to 10.5	7.557 - 8.417	50 - 1.600	Female 2
-2.8 to 76.7	3.162 - 7.300	50 - 1.600	Male 3	1.8	-2.2 to 2.1	56.13 - 58.59	400 - 3.200	Female 3
-10.5 to -2.3	3.075 - 3.417	50 - 400	Male 4	2.7	-3.8 to 3.2	5.949 - 6.384	50 - 800	Female 4
-13.3 to 0.8	3.658 - 4.211	50 - 800	Male 5	1.9	2.0 to 4.4	1.782 - 1.862	50 - 400	Female 5
-9.1 to -5.0	8.746 - 9.579	50 - 1.600	Male 6	3.2	3.3 to 9.7	9.829 - 10.835	50 - 1.600	Female 6
-5.4 to 3.1	722.0 - 785.7	9.000 - 81.000	Male 7 (LPS induced)	1.5	-0.3 to 3.1	1.061 - 1.097	9.000 - 243.000	Female 7 (LPS induced)
	3.075 - 3.417 3.658 - 4.211 8.746 - 9.579 722.0 - 785.7	50 - 400 50 - 800 50 - 1.600 9.000 - 81.000	Male 4 Male 5 Male 6 Male 7 (LPS induced)	1.9 3.2 1.5	-3.8 to 3.2 2.0 to 4.4 3.3 to 9.7 -0.3 to 3.1	5.949 - 0.384 1.782 - 1.862 9.829 - 10.835 1.061 - 1.097	50 - 400 50 - 1.600 9.000 - 243.000	Female 4 Female 5 Female 6 Female 7 (LPS induced)

www.citoxlab.com

LLOQ 3.520 - 5.127 1.3 - 7.0 4.357 12.6 %difference Monkey serum from individuals with low and high levels of endogenous CRP was spiked with an amount of CRP equivalent to the endogenous level.

Table 3. Selectivity in various Cynomolgus monkeys

n range, % relative error cannot be

Sampla	CRP Concentration (ng/mL)					Sampla		CRP Concent	ration (ng/mL)		
ID	Unspiked Measured	Spiked	Expected	Spiked Measured	%RE	ID	Unspiked Measured	Spiked	Expected	Spiked Measured	%
Female 1- High	78.55	75.00	153.55	183.89	19.8	Female 1- Low	18.41	12.00	30.41	29.91	-1
Female 2 - High	41.61	35.00	76.61	83.22	8.6	Female 2 - Low	13.94	12.00	25.94	28.85	- 11
Female 3 - High	115.86	95.00	210.86	268.33*	NA	Female 3 - Low	14.20	12.00	26.20	28.42	8
Male 1 - High	71.64	75.00	146.64	169.28	15.4	Male 1 - Low	19.59	12.00	31.59	33.74	6
Male 2 - High	96.58	75.00	171.58	211.68	23.4	Male 2 - Low	15.49	12.00	27.49	28.94	5
Male 3 - High	106.28	95.00	201.28	387 10*	NA	Male 3 - Low	13.27	12.00	25.27	25.90	2

Result above quant Parallelism

Selectivity

Samples from non-treated and LPSinduced individuals were tested for parallelism. Depending on the CRP levels present in the samples, serial dilutions were prepared to bring the samples into the quantification range. Res nerence upon dilution.

Figure 5. CRP concentration in Cynomolgus monk sera upon dilution (between 50- to 243 000-fold)

sults at the MRD (Minimum	¥
d Dilution) or beyond	2
ng on the dilution range)	\$ \$ \$ \$ \$ \$ \$ \$
ed for reference in the	
n of the % difference upon	Dilution for

Dilution or (range)	Adjusted Result (µg/mL)	% difference (range)	Overall %CV	Sample ID	Dilution factor (range)	Adjusted Result (µg/mL)	% difference (range)	Overall %CV
0 - 3.200	22.30 - 25.84	-10.5 to 4.2	5.6	Male 1	50 - 1.600	7.455 - 8.867	-17.3 to -3.4	7.5
0 - 1.600	7.557 - 8.417	-0.3 to 10.5	4.5	Male 2	50 - 800	5.605 - 6.516	-7.6 to 7.4	6.5
0 - 3.200	56.13 - 58.59	-2.2 to 2.1	1.8	Male 3	50 - 1.600	3.162 - 7.300	-2.8 to 76.7	39.3
50 - 800	5.949 - 6.384	-3.8 to 3.2	2.7	Male 4	50 - 400	3.075 - 3.417	-10.5 to -2.3	5.2
50 - 400	1.782 - 1.862	2.0 to 4.4	1.9	Male 5	50 - 800	3.658 - 4.211	-13.3 to 0.8	6.7
0 - 1.600	9.829 - 10.835	3.3 to 9.7	3.2	Male 6	50 - 1.600	8.746 - 9.579	-9.1 to -5.0	3.2
0 - 243.000	1.061 - 1.097	-0.3 to 3.1	1.5	Male 7 (LPS induced)	9.000 - 81.000	722.0 - 785.7	-5.4 to 3.1	4.3

REFERENCES

1. Du Clos T. W. Annals of Medicine, 2000, 32(4): 274-8 - 2. Thompson D. et al. Structure. 1999; 7(2): 169-177 - 3. Text and Figures 1 and 2 courtesy of Beckman Coulter Inc. - 4. Guidance for Industry: Bioanalytical Method Validation (2001), CDER and CVM. - 5. Jean W. Lee et al. Pharm Res. 2005; 23: 312-328 - 6. Valentin M.-A. et al., J. Pharm. Biomed. Anal. 2011; 55: 869-77. SPARCL is a trademark of Lumigen, Inc. and Beckman Coulter, Inc.

sus monkeys

% difference (range)	Overall %CV
0.7 to 5.4	2.3
-15.8 to -1.6	6.3
1.0 to 4.7	2.5
0.5 to 4.6	2.6
-1.1 to 8.6	4.2
-3.0 to 6.2	3.4
-1.4 to 2.9	1.8

Figure 6. CRP concentration in Rhesus m sera upon dilution (between 50- to 19 200-fold)

Table 6. Monkey CRP assay: Stability results

Conditions	Bench-t	op for 18h	3 Freeze-	thaw cycles	Long-term stability (70 days) at -70°C		
Sample ID	Low	Low High		High	Low	High	
Reference concentration (ng/mL)	13.03	171.68	13.03	171.68	13.03	171.68	
Mean	13.38	168.89	12.77	150.26	12.95	150.23	
%CV	1.5	8.1	2.3	7.6	2.2	3.3	
%RE	2.7	-1.6	-2.0	-12.5	-0.6	-12.5	
n	3	3	4	4	4	4	

 Table 7. Impact of hemolysis in various monkey individuals

Sample ID	Adjusted Result (µg/mL)	Hemolyzed sample Adjusted Result (µg/mL)	% RE
Male 1	5.254	4.558	-13.2
Male 2	4.073	3.797	-6.8
Female 1	2.966	2.814	-5.1

Figure 8, cTnL and CRP concentrations in Cv and Rhesus (n=2 each) monkey sera before and after coronary ligation